Short Communication

Showcase to Illustrate how the Web-Server Psuc-Lys is Working

Kuo-Chen Chou*

*Corresponding author: Kuo-Chen Chou, Gordon Life Science Institute, Boston, Massachusetts 02478, USA

Short Communication

In 2016 a very powerful web-server predictor has been established for predicting lysine succinylation sites in protein [1], which is one of the most important modifications in proteins. To see how the webserver is working, please do the following.

Step 1: Opening the webserver at http://www.jci-bioinfo.cn/pSuc-Lys, you will see the top page of pSuc-Lys on your computer screen, as shown in Figure 1. Click on the Read Me button to see a brief introduction about the predictor. Figure 1. A semi-screenshot for the top page of the web server pSuc-Lys at http://www.jci-bioinfo.cn/iSuc-Lys. (Adapted from [1] with permission).

Step 2: Either type or copy/paste your query protein sequences into the input box at the center of Figure 1. The input sequence should be in the FASTA format. For the examples of sequences in FASTA format, click the Example button right above the input box.

Step 3: Click the Submit button to get the predicted result. For example, if you use the Example window as the input, the corresponding predicted results are quite consistent with experimental observations.

Step 4: As shown on the lower panel of Figure 1, you may also choose the batch prediction by entering your e-mail address and your desired batch input file (in FASTA format of course) via the Browse button. To see the sample of batch input file, click on the button Batch-example.

Figure 1: A semi-screenshot for the top page of the web server pSuc-Lys at http://www.jci-bioinfo.cn/iSuc-Lys. (Adapted from [1] with permission).
Step 5: Click the Supporting Information button to download the benchmark dataset used in this study.

Step 6: Click the Citation button to find the relevant papers that document the detailed development and algorithm of iSuc-PseOpt.

It is anticipated that the Web-Server will be very useful because the vast majority of biological scientists can easily get their desired results without the need to go through the complicated equations in [1] that were presented just for the integrity in developing the predictor. Also, note that the web-server predictor has been developed by strictly observing the guidelines of “Chou’s 5-steps rule” and hence have the following notable merits (see, e.g., [2,3] and three comprehensive review papers [4-6] (1) crystal clear in logic development, (2) completely transparent in operation, (3) easily to repeat the reported results by other investigators, (4) with high potential in stimulating other sequence-analyzing methods, and (5) very convenient to be used by the majority of experimental scientists. It has not escaped our notice that during the development of iSuc-PseOpt web-server, the approach of general pseudo amino acid components [7] or PseAAC [8] had been utilized and hence its accuracy would be much higher than its counterparts, as concurred by many investigators (see, e.g., [9,10]. For the wonderful and awesome roles of the “5-steps rule” in driving proteome, genome analyses and drug development, see a series of recent papers [11-32] where the rule and its wide applications have been very impressively presented from various aspects or at different angles.

References
25. Chou KC (2020) Showcase to illustrate how the webserver iSNO-AAPair is working. J Gent & Genome 24: 18156-18160.

-- *** --